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Abstract

A finite element model for fully automatic simulation of multi-crack propagation in concrete beams is presented.

Nonlinear interface elements are used to model discrete cracks with concrete tensile behaviour represented by the

cohesive crack model. An energy-based crack propagation criterion is used in combination with a simple remeshing

procedure to accommodate crack propagation. Various local arc-length methods are employed to solve the material-

nonlinear system equations characterised by strong snap-back. Three concrete beams, including a single-notched

three-point bending beam (mode-I fracture), a single-notched four-point shear beam (mixed-mode fracture) and a

double-notched four-point shear beam (mixed-mode fracture), are modelled. Comparisons of the numerical results with

experimental data show that this model is capable of fully automatically modelling concrete tensile fracture process with

accurate pre/post-peak load–displacement responses and crack trajectories. Its mesh-objective nature, together with the

high efficiency of the energy crack propagation criterion, makes using coarse meshes to obtain reasonably accurate

simulations possible. The local arc-length numerical algorithms are found to be capable of tracking complex equili-

brium paths including strong snap-back with high robustness, generality and efficiency.
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1. Introduction

Developing finite element models (FEM) to simulate tensile fracture behaviour of concrete beams has

been extensively carried out in the last two decades. Two types of crack models, i.e., the smeared crack
model and discrete crack model, are most frequently used to represent cracking. The smeared crack model
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assumes that an infinite number of parallel cracks of infinitely small opening are distributed over the finite

element based on a fixed finite element mesh. The crack propagation is simulated by reducing the material

stiffness and strength. The constitutive laws are defined by nonlinear stress–strain relations with strain

softening. The discrete crack model is based on displacement discontinuity, which is usually represented by
nonlinear interface elements. The constitutive behaviour of such elements is represented by softening

traction-crack relative displacement relations, as assumed by the cohesive crack model (CCM), or fictitious

crack model termed by Hillerborg et al. (1976). The smeared crack model has been much more popular

than the discrete crack model because of its computational convenience (e.g., De Borst, 1986, 1987; Rots

and De Borst, 1987; Bazant and Lin, 1988; Rots, 1988, 1991; Yamaguchi and Chen, 1990; Malvar, 1993;

Bolander and Hikosaka, 1992; Duan, 1994; Foster et al., 1996; Abdollahi, 1996a,b; Ali, 1996; May and

Duan, 1997; Ozbolt and Reinhardt, 2002). The latter has been less investigated (e.g., Ingraffea and Gerstle,

1984; Carpinteri, 1989; Bocca et al., 1990, 1991; Rots, 1991; Gerstle and Xie, 1992; Xie, 1995; Xie and
Gerstle, 1995; Cendon et al., 2000; Galvez et al., 2002; Yang and Proverbs, 2004), mainly because of various

numerical complexities compounded by the constant change of finite element meshes caused by node

separation to accommodate crack propagation. Besides a proper constitutive model for concrete tensile

softening behaviour, a successful FEM based on discrete crack model must have additional four key

features: a proper crack propagation criterion, an efficient remeshing procedure, an accurate mesh-mapping

technique to transfer structural responses of an old FE mesh to a new one, and a robust and efficient

numerical solution technique to solve nonlinear equation systems characterised with snap-through or snap-

back. It is worth noting that besides the traditional smeared crack models and discrete crack models,
another attractive type of models recently developed based on embedded displacement discontinuity (Moes

et al., 1999; Wells and Sluys, 2000; Alfaiate et al., 2002; Moes and Belytschko, 2002), do not need reme-

shing.

A proper crack propagation criterion is needed to determine when and in which direction a crack will

propagate. The crack is usually assumed to propagate at the direction of the maximum principal stress of

the crack-tip node, which is a basic assumption of the original CCM. This direction criterion has been most

used. The CCM also assumes that the crack propagates when the maximum principal stress of the crack-tip

node reaches concrete tensile strength. This stress-based assumption has been used by most existing studies
(e.g., Carpinteri, 1989; Bocca et al., 1990, 1991). Cendon and his co-workers used a maximum tangential

stress criterion (Cendon et al., 2000; Galvez et al., 2002). However, nodal stresses are either interpolated

from those of integration points in isoparametric finite elements, or are constants when constant strain

elements are used. In both cases, very fine crack-tip meshes are necessary to predict accurate stresses. In

order to reduce the required mesh density near the crack tip so as to simplify the remeshing procedure, Xie

(1995) developed an energy-based cohesive crack propagation criterion. Because of the fast convergence

rate of energy entities in FE analysis, crack propagation can be modelled more accurately even using coarse

meshes (Xie, 1995; Xie and Gerstle, 1995).
An efficient remeshing procedure is paramount in discrete crack modelling to accommodate crack

propagation. The procedures currently available can generally be classified into two categories. One may be

termed ‘‘remove-rebuild’’ algorithm. In this algorithm, a new crack-tip node is determined by extending a

specified crack growth increment in the calculated propagation direction. The original mesh within a certain

range around the new crack-tip node is then completely removed. A complex procedure is followed to form

the new crack and regenerate the mesh within this range where a regular rosette is added. This regenerating

procedure may be too complicated to be applied to composite structures such as reinforced concrete beams

with dissimilar material interfaces. Representatives of such algorithm are the ones developed by
Wawrzynek and Ingraffea (1989) and Bocca et al. (1990, 1991). The other type of algorithms may be termed

‘‘insert-separate’’ algorithms such as one developed by Xie in his program AUTOFRAP (Xie, 1995; Xie

and Gerstle, 1995). In this procedure, a new edge from the old crack-tip node is first inserted into the local

mesh in the propagation direction. The intersection point of this edge with the original mesh is the new
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crack-tip node. The new crack is then formed by separating those nodes along the line through the new and

old crack-tip nodes. A rosette can be finally added to refine the tip-node mesh. Because this procedure

neither completely removes nor rebuilds the new crack-tip mesh as the ‘‘remove-rebuild’’ procedure does,

fewer elements are affected and the procedure is much simpler. After remeshing, the structural state vari-
ables from the old mesh need to be transferred/mapped as accurately as possible to the new mesh as their

initial values to be used in next loading step so as to ensure numerical convergence. The most widely used

mapping methods are inverse isoparametric mapping (e.g., James, 1998) and direct interpolation (e.g.,

Harbaken and Cescotto, 1990).

A variety of numerical procedures have been used to solve nonlinear equation systems associated with

material softening, such as Newton iteration and its extensions (e.g., Abdollahi, 1996a,b), dynamic re-

laxation (Xie, 1995; Xie and Gerstle, 1995), and various arc-length controlled procedures (e.g., De Borst,

1986; Crisfield, 1986; Rots and De Borst, 1987; Crisfield and Wills, 1988; Rots, 1991; May and Duan, 1997;
Hellweg and Crisfield, 1998; Alfano and Crisfield, 2001; Crisfield et al., 1997). These solutions, however,

have not necessarily led to ideal predictions. Various problems have been reported when the post-peak part

of the load–displacement relation is desired, especially when sharp snap-back phenomenon happens in

mixed-mode fracture modelling. The Newton iteration methods with load control fail to converge once the

limiting point is reached and the post-peak responses cannot be predicted. Displacement controlled Newton

methods can tackle structural problems exhibiting snap-through but fail to model snap-back behaviour.

The dynamic relaxation method used in a few analyses (Xie, 1995; Xie and Gerstle, 1995) has been criticized

for its slow convergence rate and numerical instability due to uncertainties in selecting various pseudo-
parameters (e.g., Underwood, 1983). The arc-length method, initially proposed by Riks (1979) and sub-

sequently adapted by Crisfield (1981) and others, succeeded for the first time in tracing the limiting point

and post-peak responses by constraining the iterative path along a normal plane or a cylindrical/sphere

controlled by a prescribed arc-length. This method has been widely used. However, it has been often re-

ported that these traditional normal-plane and cylindrical/spherical arc-length methods may still fail to

converge at or near the limiting points when they are applied to problems involving softening materials

(Crisfield, 1986; De Borst, 1986, 1987; Rots and De Borst, 1987; Crisfield and Wills, 1988; Duan, 1994;

Crisfield et al., 1997; May and Duan, 1997; Hellweg and Crisfield, 1998; Alfano and Crisfield, 2001). Even
the combination of line searches and acceleration techniques (e.g., quasi-Newton) with arc-length method
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Fig. 1. Key steps of discrete crack FEM.
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only achieved limited improvements (May and Duan, 1997). De Borst (1987) and Rots and De Borst (1989)

pointed out that this inability should be attributed to the global constrain equations including all the de-

grees of freedom, which was contradictory to the fact that the failure zone or fracture process zone in

concrete beams is highly localised. They thus used only the crack sliding displacement (CSD) and the crack
opening displacement (COD) in the constraint equations, respectively. Duan (1994) further devised a new

local arc-length procedure to tackle this problem. By automatically distinguishing the strain-localized

zones, the selection of relative displacements becomes problem-independent. They reported close agree-

ments with the experimental data based on the local constraint methods using the smeared crack model.

However, very few studies using arc-length methods in the context of discrete crack modelling have been

reported. In addition, almost all such studies used pre-defined interface elements. For example, Rots (1991)
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used pre-defined interface elements with the COD controlled arc-length method. Alfaiate et al. (1997)

developed a ‘‘non-prescribed’’ crack propagation model that limited the cracks along the edges of the finite

elements without changing the original FE meshes. This model thus approximates a smooth crack tra-

jectory with a zigzagged one. Recent studies reported by Cendon and his co-workers (Cendon et al., 2000;
Galvez et al., 2002) used a two-stage approach: predicting crack paths using linear elastic fracture me-
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chanics (LEFM) and incorporating CCM into the crack paths by nonlinear springs. The conclusions drawn

from a recent comparative study carried out by the authors (Yang and Proverbs, 2004) was also based on

pre-defined crack paths although some initial automatic modelling of crack propagation was carried out on

a single-edge notched shear beam. More investigation of the application of arc-length methods to fully
automatic discrete crack modelling of fracture process in concrete structures is still desired.

This paper presents a fully automatic discrete crack propagation model for fracture analysis of concrete

structures. It uses the remeshing procedure and the energy-based crack propagation criterion proposed by

Xie (1995) and Xie and Gerstle (1995). An in-house program, incorporating a modified version of Xie�s
AUTOFRAP and implementing various numerical techniques, was developed and used in this study. The

following first describes the key aspects of the model. Four concrete beams, including a single-edge notched

three-point bending beam (mode-I fracture), a single-edge notched four-point shear beam (mixed-mode

fracture) and a double-edge notched four-point shear beam (mixed-mode fracture), are then modelled.
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Table 1

Parameters of bilinear COD-traction curves of three example beams

Beam Gf (N/m) r0 (MPa) w0 (mm) r1 (MPa) w1 (mm) wc (mm) k0 (MPa)

SENB 137.0 3.33 0.00001 1.11 0.0329 0.148 33,000

SENS 150.0 4.0 0.00001 1.33 0.03 0.135 40,000

DENS 100.0 2.0 0.00001 0.67 0.04 0.18 20,000
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Various local arc-length strategies are examined and their computational efficiency and effectiveness are

discussed as well as the robustness and mesh objectivity of the model.
2. Discrete crack finite element model

A thorough description of this model and its computer implementation (Yang, 2002) are beyond the

scope of this paper. Fig. 1 illustrates its key steps. The critical physical and numerical aspects of the model

are briefly presented as follows.
Fig. 9. Initial finite element meshes for SENB beam: (a) Lmax > 25 mm, (b) Lmax ¼ 25 mm and (c) Lmax ¼ 10 mm.

Fig. 10. Initial finite element meshes for SENS beam: (a) Lmax > 20 mm and (b) Lmax ¼ 20 mm.



Fig. 11. Initial finite element meshes for DENS beam: (a) Lmax > 22 mm and (b) Lmax ¼ 22 mm.

Fig. 12. Cracking process of the SENB beam using Lmax ¼ 25 mm (a) F ¼ 0:6 KN, (b) F ¼ 0:8 KN (peak load), (c) F ¼ 0:464 KN and

(d) F ¼ 0:30 KN (on collapse): 390 nodes and 9 interface elements.
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2.1. Cohesive crack model and unloading paths

CCM can accurately model the energy dissipation process in quasi-brittle materials such as concrete. It

assumes that a fictitious crack or a fracture process zone (FPZ) exists ahead of a real crack tip. The FPZ has
the capability of transferring stresses through mechanisms such as aggregate interlock and material

bonding until the COD reaches a critical value. The CCM has become the basis of nonlinear discrete crack

modelling and has been incorporated into some finite element codes in the form of two-dimensional four-

node, six-node and three-dimensional eight-node interface elements to model mode-I and mixed-mode

crack propagation (e.g., Ingraffea and Gerstle, 1984; Gerstle and Xie, 1992; Xie, 1995; Xie and Gerstle,

1995). The four-node interface elements developed by Gerstle and Xie (1992) are used to represent the

cohesive cracks in this study. Fig. 2 schematically shows the FPZ in concrete structures and two interface

elements used to model the FPZ.
The Petersson�s bi-linear curve (Petersson, 1981) is used here to model the softening behaviour of the

cohesive interface elements. Fig. 3 shows the bi-linear COD-traction curve with unloading path indicated.

The initial stiffness should be high enough to represent the uncracked material prior to the concrete tensile

strength as long as numerical ill-conditioning does not occur. Most existing research used an irreversible

unloading path or an elastic damage model (Path 1 in Fig. 3). It assumes that after reaching a value w�, for

decreasing value of w an elastic unloading occurs with a reduced stiffness which represents the secant from

the current point to the origin (AfiC) (Rots and De Borst, 1987; Rots, 1988; Rots, 1991; Ali, 1997;

Alfaiate et al., 1997; Alfano and Crisfield, 2001). Hellweg and Crisfield (1998) distinguished another un-
loading mechanism, i.e., reversible unloading, which assumes a completely reversible COD-traction con-

stitutive law (Path 2 in Fig. 3) (AfiBfiC). Physically, the irreversible unloading represents cracking more

realistically than the reversible unloading because when a crack is closing, it cannot transfer higher stresses

because the stress-transferring mechanisms such as aggregate interlock and material bonding have been
Fig. 13. Deformed configurations of the SENB beam on collapse. (a) Lmax > 25 mm (F ¼ 0:53 KN, 242 nodes and 5 interface elements)

and (b) Lmax ¼ 10 mm (F ¼ 0:167 KN, 513 nodes and 16 interface elements).



Fig. 14. Cracking process of the SENS beam using Lmax ¼ 20 mm. (a) F ¼ 140 KN (peak load), (b) F ¼ 120 KN, (c) F ¼ 60 KN and

(d) F ¼ 20 KN (on collapse): 519 nodes and 25 interface elements.
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damaged. However, the authors� previous study (Yang and Proverbs, 2004) showed that the unloading

paths played an important role in numerical strategies in modelling a mixed-mode concrete beam. In view

of this both unloading paths will be investigated in this research.

2.2. Energy-based crack propagation criterion

Based on the principle of energy conservation, Xie (1995) derived the following energy-based cohesive

crack propagation criterion
Fig. 15

ments.
G� uT
of

oA
¼ 0 ð1Þ
where u is the displacement vector, f is the cohesive forces and A is the crack surface area. G is the total

strain energy release rate (SERR) calculated by
G ¼ � 1

2
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oK

oA
uþ uT

oP

oA
ð2Þ
where K is the total stiffness matrix of the elastic bulk and P the total equivalent nodal force due to external

tractions and body forces. In planar mixed-mode fracture problems, the displacement field and SERR can

be decomposed to Mode-I and Mode-II components as
u ¼ uI þ uII ð3Þ

G ¼ GI þ GII ð4Þ

Fig. 4 presents a simple method for conducting a virtual crack extension (VCE) as proposed by Xie

(1995) to compute SERR, in which only the crack-tip elements contribute to the energy release rates. By

using a finite difference approximation from Eq. (2), the Mode-I and Mode-II SERRs in Eq. (4) may be

expressed as
GI ¼ � 1
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. Deformed configurations of the SENS beam using Lmax > 20 mm on collapse: F ¼ 23 KN, 283 nodes and 11 interface ele-



Fig. 17. Deformed configuration of the DENS beam using Lmax > 22 mm: F ¼ 20 KN, 241 nodes, 14 interface elements.

Fig. 16. Cracking process of the DENS beam using Lmax ¼ 22 mm (a) F ¼ 42 KN (peak load), (b) F ¼ 36 KN, (c) F ¼ 27 KN,

(d) F ¼ 23 KN: 388 nodes and 24 interface elements.
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in which Nce and Ncef are the total number of elements and the number of elements with applied force

around the crack tip respectively; ueIi and ueIIi are the Mode-I and Mode-II displacement vectors of the ith
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crack-tip element respectively; DKe
i is the change of ith crack-tip element stiffness matrix due to VCE; Dpej is

the change of the nodal force vector of the jth crack-tip element due to VCE; and DA is the increase of crack

surface area after a VCE Da and DA ¼ tDa for a 2D structure with a thickness t.
Interested readers are referred to Yang et al. (2001) for detailed discussion of calculating SERR. The

second term of Eq. (1) can be explicitly derived using the four-node interface elements (Xie, 1995). The

crack is assumed to propagate in the direction of the maximum principal stress of the crack-tip node.
2.3. Remeshing procedure

When a crack is judged to propagate, a remeshing procedure is carried out to accommodate its propa-

gation. The basic steps of Xie�s remeshing procedure (Xie, 1995) are outlined as follows.
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based algorithms.
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• delete the existing rosette around the old crack-tip node;

• locate the next tip according to calculated crack propagation direction. Two cases are identifiable (Fig.

5):

Case 1: the next crack tip is an existing node connected to the old crack tip;
Case 2: the next crack tip is on the edge of a crack-tip element;

• for Case 1, the edge connecting the new crack-tip node and the old one is split up. For Case 2, the node

closest to the new crack-tip position is dragged to the new crack-tip place and is treated as the new crack-

tip node. In this way Case 2 becomes Case 1 (Fig. 5);

• refine the new crack-tip mesh according to a specified maximum crack propagation length;

• triangularize all elements around the new crack tip; and

• add a rosette around new crack tip.

For each crack during this procedure, the old three-node crack-tip interface element is altered to a four-

node interface element. One three-node tip interface element and one four-node one are created.

2.4. Mesh mapping

The model adopts a direct mapping method proposed by Harbaken and Cescotto (1990). It evaluates the

nodal values in the new mesh by directly interpolating those from the old mesh. The following equation is

used to map a variable Z, which can be stress, displacement and other state variables at point j
Table

Total

Alg

SEC

SEC

SEC

SEC

SEC

SEC

TAN
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TAN
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TAN
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R2
kj

� �
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ð6Þ
where N is the number of points for interpolation in the old mesh, Zk is the value of Z at the point k, Zp is the

value of Z at the nearest point p to point j, and Rkj is the distance between points k and j. The technique

requires the user to specify N points for interpolation, the maximum distance Rmax, the minimum distance

Rmin and the coefficient C. Those points outside the radius Rmax are not considered. If there is a point k very
2

number of increments and total iterations for SENB beam

orithm Nd ¼ 20 Nd ¼ 30

Total number of

increments

Total number of

iterations

Total number of

increments

Total number of

iterations

-REV-V1 37 814 24 769

-REV-V2 33 668 22 664

-REV-V3 48 1172 25 991

-IRE-V1 37 814 24 769

-IRE-V2 34 681 22 666

-IRE-V3 48 1172 25 991

-REV-V1 15 794 15 597

-REV-V2 17 445 15 610

-REV-V3 16 751 10 1200

-IRE-V1 15 795 13 592 (failed)

-IRE-V2 19 421 15 618

-IRE-V3 14 746 8 580 (failed)
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close to j so that their distance is smaller than Rmin, Zk is assigned to the value of Zj. The main advantages of

this method are the simplicity and flexibility in choosing C, Rmax and Rmin. Their optimum values to achieve

best mapping results are mesh and problem dependent. This study uses a set of empirical values as follows:

C ¼ 0:8, Rmin ¼ 0:1Le and Rmax ¼ 3Le where Le is the length of the longest edge of the element in the old
mesh in which the mapped point is located.
2.5. Local arc-length method

The comparative study carried out by the authors (Yang and Proverbs, 2004) has shown that the local

arc-length algorithms are much more superior than the global ones in terms of numerical robustness and

efficiency. The term ‘‘global’’ used herein means that the arc-length constraint equations include all the

degrees of freedom whereas only selected degrees of freedom of dominant nodes are included in a ‘‘local’’
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Fig. 19. Iterative characteristics of TAN/SEC-based algorithms for the SENB beam. (a) TAN-based algorithms and (b) SEC-based

algorithms.
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arc-length method. The Duan�s local updated normal plane constraint equation (Duan, 1994; May and

Duan, 1997) is used in this study. The local arc-length formulations in one loading increment can be written

as
 X
e

rðDu1TÞ � rðDukÞ ¼ l2; ðk ¼ 2; 3; 4; . . .Þ ð7aÞ

dk1 ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
e rðd�uuTÞ � rðd�uuÞ

p ð7bÞ

dkk ¼ dk1 �
P

e rðd�uuTÞ � ðrðDuk�1Þ þ rðdu�ÞÞP
e rðd�uuTÞ � rðd�uuÞ ; ðk ¼ 2; 3; 4; . . .Þ ð7cÞ
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Fig. 20. Load-CMSD curves of beam SENS: (a) TAN-based algorithms and (b) SEC-based algorithms.
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where l is the specified arc-length, u is the displacement vector and k is the loading factor. The symbols D
and d represent incremental and iterative change respectively. k is the iterative number. d�uu and du� are

iterative displacement vectors (Crisfield, 1997). Eq. (7a) defines the constraint equations; Eq. (7b) deter-

mines the loading factor at the beginning of a loading increment dk1; and the iterative loading factors are
calculated by Eq. (7c).

The summation in Eq. (7) is calculated in an element-by-element way. Only the elements contributing to

structural nonlinearity are included in the constraints. In the smeared crack models, they are finite elements

in the damage and failure zones. In CCM based discrete crack models, they are nonlinear interface ele-

ments. The symbol r denotes the relative displacement vector (RDV) of dominant elements,
rðaÞ ¼ a1 � an a2 � a1 a3 � a2 � � � an � an�1½ �T ð8Þ
where vector a is any displacement vector in Eq. (7).

For discrete crack modelling in which the nonlinear interface elements are the dominant elements, an-

other formulation of RDV may include only two CODs and two CSDs of the two pairs of nodes of all four-
node interface elements (Fig. 2), i.e.,
rðaÞ ¼ a2 � a8 a4 � a6 a1 � a7 a3 � a5½ �T ð9Þ
Simpler forms may include only COD or CSD at the crack mouth such as
rðaÞ ¼ ½a2 � a8�T ð10aÞ

rðaÞ ¼ ½a1 � a7�T ð10bÞ
This set of formulations (Eqs. (7–10)) have three advantages (Duan, 1994; May and Duan, 1997): (i) Eq.

(7a) limits the iteration trajectory on a spherical surface, which always has an intersection with the equi-

librium path; (ii) it does not need to choose a proper root as spherical/cylindrical constraints do since there

is only one root of loading factor; and (iii) the sign of the loading factor will be changed automatically if

necessary within the iterations if a total secant stiffness is used; (iv) this local algorithm using RDV

guarantees a rapid and stable convergence because it is able to catch the structural nonlinearity and remove
the adverse effects of the rigid body movement on the accurate representation of nonlinearity. These ad-

vantages have also been demonstrated in (Yang, 2002; Yang and Proverbs, 2004).
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The authors� study has also shown (Yang and Proverbs, 2004) that this constraint method does not

inherently defy using the tangential stiffness. When the tangential stiffness is used, Eq. (7b) should be

modified as follows
Fig. 22

(b) aro
dk1 ¼ signð K1
t

�� ��Þ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
e rðd�uuTÞ � rðd�uuÞ

p ð11Þ
where jK1
t j is the determinant of the tangential stiffness matrix K1

t calculated at the first iteration of a

loading increment.

At the beginning of each loading step, the arc-length l (Eq. (7)) must be determined to ensure the

efficiency of the algorithms. Bellini and Chulya (1987) found that the definition of l had a direct effect on

the performance of cylindrical/spherical arc-length algorithms applied to geometrically nonlinear problems.
The arc-length of the ith loading increment li is often predicted by (Crisfield, 1997)
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li ¼
Nd

Ni�1

� �m

li�1; i ¼ 2; 3; 4; . . . ð12Þ
where Ni�1 and li�1 are the iteration number and arc-length used by the (i� 1)th loading step respectively.

Nd is a desired optimum iteration number which is problem-dependent. The coefficient m ranges from 0.25

to 0.5 (Bellini and Chulya, 1987). Eq. (12) tends to shorten l to keep the iteration number down when it

exceeds Nd.

The arc-length in the first loading increment l1 can be determined from Eq. (7b) by specifying an initial

loading factor based on a proper reference loading condition, e.g., dk1 ¼ 0:1. Special considerations are

needed for the second loading increment when Eq. (12) is used in some cases. For example, in the three
numerical example beams modelled in this study (ref. Sections 3 and 4), there are no initial cracks and thus

no interface elements in the first loading increment. Interface elements are added in the second increment.

This means all the nodal displacements are used in Eq. (7b) (i.e., global arc-length method), which results in

a relatively large l1. If a comparable l2 calculated from Eq. (12) is used in Eq. (7b), dk1 for the second
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loading increment will be very large because only RDVs of the added interface elements are used in Eq.

(7b). Too many iterations or even divergence may be caused by the large dk1. In order to avoid this, Eq. (12)

is modified as
dk1i ¼ kini i ¼ 1; . . . ; j

li ¼ Nd

Ni�1

� �m
li�1 i ¼ jþ 1; . . .

(
ð13Þ
where j is the loading increment in which the interface elements are first added and kini is an initial loading

factor for the first j increments. The following default values are used: Nd ¼ 20, m ¼ 0:5 and kini ¼ 0:1.

2.6. Iterative numerical algorithms and convergence criterion

The modified Newton–Raphson iterative procedure is used for all the analyses, i.e., the global stiffness

matrix is formed at the first iteration of every loading increment and remains unchanged during iterations

afterwards.
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The convergence criterion based on the out-of-balance force factor is used for all the analyses, i.e.,
krðuÞk
k0kfek

6 b ð14Þ
where r is the out-of balance force vector, fe is the reference loading vector, b is the tolerance, k0 is the

converged total loading factor of the last loading increment and the norms are Euclidean. A tolerance of

0.001 is used in all the analyses.

The analysis is terminated when any of the following cases is encountered: (i) a crack extends to the finite
element boundary; (ii) the iteration number exceeds the specified maximum allowed iteration number (1000

in this study); and (iii) the calculated post-peak load is smaller than a specified one.
3. Numerical examples

Three plain concrete beams with experimental data available are modelled as numerical examples in this

study.

3.1. Test setups and material properties

The first example is a single-edge notched beam subjected to three-point bending (SENB). It was tested

by Petersson (1981) and modelled by Saleh and Aliabadi (1995) using boundary element method (BEM)

and by Xie (1995) using FEM. The geometry, boundary conditions and material properties of the beam are

shown in Fig. 6. This is a mode-I crack propagation problem.

The second example is the four-point single-edge notched shear beam (SENS) first tested and analysed

by Arrea and Ingraffea (1982). This shear beam has since become a benchmark for the purpose of mixed-
mode crack propagation analysis using both FEM (Rots and De Borst, 1987; Xie, 1995; Xie and Gerstle,

1995; Cendon et al., 2000; Yang and Proverbs, 2004) and BEM (Saleh and Aliabadi, 1995). The geometry,

boundary conditions and material properties of this beam are shown in Fig. 7.

The third example is the four-point double-edge notched shear beam (DENS) tested and modelled by

Bocca et al. (1990, 1991). Two cracks form during the loading process. This may well demonstrate the

model�s potential to model complex multi-crack propagation. The geometry, boundary conditions and

material properties of this beam are shown in Fig. 8.

The shear fracture resistance for the two mixed-mode beams SENS and DENS is simply neglected in this
study. This negligence is based on three reasons. Firstly, it has been demonstrated that inclusion of shear

traction-CSD curve could only lead to insignificant improvements (e.g., Ali, 1996). Secondly, for these two

particular beams, the shear effect is only significant in the initial stage after which mode-I fracture is

dominant according to Bocca et al. (1990, 1991). Thirdly, there is a lack of experimental data about the

shear traction-CSD curve.

The parameters of the COD-normal traction curves represented by Petersson�s bilinear model (Fig. 3) for

the three beams are listed in Table 1.

3.2. Finite element modelling

The local arc-length constraint (Eq. (7)) discussed in Section 2.5 can be combined with the other nu-

merical aspects to form various algorithms, which have varying overall numerical effectiveness and effi-

ciency. Among the other factors, the iterative stiffness matrix, the unloading paths (Fig. 3), and the RDVs

(Eqs. (8–10)) are the major concerns of this work. For the convenience of discussion thereafter, a numerical
algorithm is defined by combining one of the three RDVs, with either the tangent or secant iterative stiffness
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matrix, and either the irreversible or reversible unloading path. The following notions are used: TAN for

tangential stiffness and SEC for secant stiffness, REV for reversible and IRE for irreversible unloading path,

and V1, V2 and V3 for RDVs in Eqs. (8) and (9), and (10) respectively. In this way 12 algorithms are

defined. For example, Algorithm TAN-IRE-V1 stands for the local arc-length constraint using RDV of Eq.
(8) with the tangential iterative stiffness and irreversible unloading path. The computational effectiveness

and efficiency will be examined and compared to each other in the following analysis.

The cracking process of the model is controlled by a maximum crack propagation incremental length

Lmax which is the maximum allowable crack extension in one loading increment. This requirement is au-

tomatically fulfilled by refining crack-tip meshes in the remeshing procedure (Section 2.3). If Lmax is

specified with a value greater than the greatest initial size of the finite elements around the potential crack

path, or with a value greater than the maximum initial size of all the finite elements, no mesh refining

operation will occur and the number of loading increments will be closer to the element number in the
cracking direction. Otherwise, the crack-tip elements and its surrounding elements will be refined during

remeshing to ensure all the actual crack propagation lengths less than Lmax. More loading steps are

therefore modelled, leading to more realistic crack trajectories and smoother load–displacement curves. In

this way, only one reasonably fine initial FE mesh is sufficient to achieve required cracking steps determined

by Lmax.

Figs. 9–11 show some initial FE meshes modelled for the three example beams with varying crack

propagation control lengths Lmax. The elastic bulk of concrete is modelled with four-node isoparametric and

three-node constant strain elements and cracks are modelled with four-node nonlinear interface elements.
The finite element meshes with different mesh density for the same beam will be used for mesh objectivity

investigation. A plane stress condition is assumed for all three beams.
4. Results and discussion

4.1. Cracking process and crack trajectory

Figs. 12–17 illustrate some typical successful cracking processes of the three beams, which are fully

automatically modelled by the presented discrete crack model. The predicted cracking processes and crack

trajectories are in good agreement with the experimental observations. One can see that during the simu-

lation, the finite element meshes are gradually refined around the cracks as they propagate if a smaller Lmax

is specified. All the displaced configurations use a scale factor of 500.

4.2. Effectiveness and efficiency of the algorithms

All the 12 algorithms are used for the three beams using the initial FE meshes shown in Figs. 9–11.

Fig. 18 shows the predicted load–deflection curves for the beam SENB using the mesh in Fig. 9a and

Nd ¼ 20. All the 12 algorithms predict the pre/post-peak responses very accurately and effectively up to
failure with a load about 0.55 KN.

Table 2 lists the number of loading increments (NOINC) and number of total iterations (NOITE) with

two desired iteration number Nd ¼ 20 and 30. The following conclusions can be drawn from Table 2: (i) the

unloading path has little effect on the effectiveness and efficiency of the algorithms for this beam. This may

be due to the monotonic increasing of incremental COD although unloading does happen in some itera-

tions; (ii) the TAN-based algorithms lead to about 35% save of NOITE over the SEC-based ones for RDV2

and RDV3 for Nd ¼ 20. The save of NOINC for all three RDVs is more than 100%. This is because the

SEC-based algorithms have lower convergence rate and in each loading increment, have averagely more
iterations which lead to shorter arc-length l (Eq. (12)) thus more loading increments. The iterative char-
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acteristics of TAN/SEC-based algorithms can be clearly observed in Fig. 19. This computational superi-

ority of TAN-based algorithms over the SEC-based ones has also been demonstrated by using pre-defined

interface elements (Yang, 2002; Yang and Proverbs, 2004); (iii) a greater Nd ¼ 30 reduces the NOINCs of

SEC-based algorithms by about 1/3, but NOITEs remain almost unchanged. Using a higher Nd ¼ 30 does
not make much difference to NOINCs of TAN-based algorithms. It increases NOITEs of TAN-REV-V2,

TAN-REV-V3 and TAN-IRE-V2 by 25–35%, and even causes numerical failure to TAN-IRE-V1 and

TAN-IRE-V2. Closer examinations showed that the calculation stops from proceeding with the iteration

running between two fixed points on an unloading path, which is demonstrated by a constant positive

tangential stiffness. This has also been experienced before (Yang, 2002; Yang and Proverbs, 2004); and (iv)

the algorithms using RDV (V2) in Eq. (9) saves NOITE by 15–45% over the algorithms using V1 and V3.

The reason for this may lie in that Eq. (9) is capable of grasping the nonlinearity more quickly than the

other two by including softening-related COD/CSD of all interface elements, whereas Eq. (8) uses RDVs
without explicit physical meanings and Eq. (10) uses only one COD/CSD at the crack mouth which is

inadequate to fully represent the nonlinearity.

Nd ¼ 20 and 30 have also been used to model the beam SENS using the mesh in Fig. 10a and similar four

conclusions to the above have been drawn. The specification of Nd is thus very important for numerical

efficiency and stability. As cracks propagate, more interface elements are added and thus more RDVs are

included in Eq. (7b). Using a constant Nd therefore tends to shorten arc-length l calculated by Eq. (12) and

lead to smaller incremental loading factors and thus more increments. Based on extensive simulations, an

interface-element-number-dependent Nd is proposed as follows
Nd ¼ N g
int þ Nd0 ð14aÞ
where Nint is the number of interface elements varying with loading increments and Nd0 is the initial opti-

mum desired iteration number. Nd0 ¼ 10 is used in this study. The coefficient g is dependent on Nint and

stiffness matrix. For SEC-based algorithms:
g ¼ 1:5 when Nint 6 10 and g ¼ 1:2 when Nint > 10 ð14bÞ
For TAN-based algorithms:
g ¼ 1:1 when Nint 6 10 and g ¼ 1:0 when Nint > 10 ð14cÞ
The higher g for SEC-based algorithms is used to compensate its slow convergence. Eq. (14) is used for all
the following simulations and proves very efficient.

Fig. 20 compares the predicted load-crack mouth CMSD curves for the beam SENS with the experi-

mental data. Again excellent agreements can be seen for both TAN-based and SEC-based algorithms. Fig.

21 presents some predicted load–deflection curves showing strong snap-back behaviour, which is very hard

to catch using the other methods.

Numerical difficulties are encountered in modelling the beam DENS with two cracks propagating si-

multaneously. As for the second beam, all three TAN-IRE-based algorithms fail by oscillation on ap-

proaching the peak load. Unexpectedly, the six REV-based algorithms, which work very well for the first
two, also fail just before or after peak load is reached. Only the three SEC-IRE-based algorithms suc-

cessfully trace the full equilibrium paths, one of which is shown in Fig. 22a. The detailed information

around the peak load is illustrated in Fig. 22b. It can be seen that initially the three loading points (F1, F2

and F) deflect with the same values. After the peak load, the deflection at Load F2 shows fierce snap-back

whereas that at Load F1 continues to increase. This process corresponds to the gradual closure of the upper

crack and continuing opening of the lower one (Figs. 16a–d and 17). A real unloading process, at the

loading incremental level, therefore takes place. This contrasts with that, in modelling the beams SENB and

SENS, only numerical unloading occurs at the iterative level. Therefore, it may be concluded that the REV-
based algorithms are unable to model problems with real unloading. This inability may be because they
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assume a unloading path that does not represent the real cracking process. It can also be concluded that if

real unloading happens, only a SEC-IRE-based algorithm can be reliably used. In this case, relatively high

computational cost (although it may still be lower than that from the other methods) should be expected

even using a local arc-length method.
Fig. 23 compares the predicted load–deflection relations with the experimental data and FEM results

from Bocca et al. (1990, 1991). The deflection at the total load F in Fig. 22 and Fig. 23 is calculated from

those at Load F1 and Load F2 assuming that the loading rig using a steel-beam has infinite stiffness. This

assumption may cause the discrepancy between the predictions with the experiment data. The discrepancy

of current predictions with Bocca et al.�s FEM results may be due to different COD-traction curves used by

this study (Petersson�s bilinear curve) and them (single linear curve).

4.3. Mesh objectivity

The predicted load–deflection/CMSD curves for the three beams using different finite element meshes
whose density is controlled by Lmax are presented in Figs. 24–26. For the beam SENB, the numbers of nodes

and interface elements of three FE meshes on collapse, i.e., Figs. 13a, 12d, and 13b, are 242 and 5, 390 and

9, and 513 and 16, respectively. For the beam SENS, these numbers of two FE meshes on collapse, i.e.,

Figs. 15 and 14d, are 283 and 11, and 519 and 25, respectively. They are 241 and 14 (Fig. 17), and 388 and

24 (Fig. 16), respectively for the beam DENS. The huge differences in degrees of freedom, the mesh density

and steps of crack propagation make little difference to the predictions in terms of both crack trajectories

and load–displacement relations. This well demonstrates the mesh objectivity and robustness of the pro-

posed model and means only a reasonably coarse mesh can lead to accurate simulations. The high
numerical efficiency is thus well preserved. The ability of SEC-IRE-based algorithms to model unloading-

involved problems with crack closure makes the model a feasible numerical tool to be used in modelling

multi-crack propagation under complex loading conditions.
5. Conclusion

This paper has presented a cohesive discrete crack model based FEM for fully automatic simulation of

multi-crack propagation in concrete beams. It combines an energy-based crack propagation criterion, a
simple remeshing procedure, and various local arc-length numerical algorithms to solve material softening-

related nonlinear equation systems. Extensive finite element analyses have been carried out using this model

to simulate crack propagation process in three concrete beams under Mode-I and mixed-mode fracture

conditions. Comparisons of the numerical results with experimental data show that this model is capable

of fully automatically modelling concrete tensile fracture process with accurate pre/post-peak load–

displacement responses as well as accurate crack trajectories.

The various local arc-length algorithms are found to be capable of tracking complex equilibrium paths

characterised with strong snap-backs due to cracking. In general, the tangential stiffness matrix based
algorithms have much higher overall efficiency over the secant stiffness matrix based ones. For problems

without real unloading, both reversible and irreversible unloading paths may lead to same predictions.

When real unloading takes place, only the irreversible path succeeds in representing the real cracking

process. In this case, a secant stiffness matrix must be used to achieve numerical convergence. The RDV,

which includes COD and CSD of all interface elements, is found to have highest computational efficiency.

The proposed model is found to have excellent mesh objectivity. This advantage, together with the high

efficiency of the energy crack propagation criterion, makes using coarse meshes to obtain reasonably ac-

curate simulations possible. The model may therefore be a feasible numerical tool to be used in modelling
multi-crack propagation under complex loading conditions.
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