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Abstract

A finite element model for fully automatic simulation of multi-crack propagation in concrete beams is presented.
Nonlinear interface elements are used to model discrete cracks with concrete tensile behaviour represented by the
cohesive crack model. An energy-based crack propagation criterion is used in combination with a simple remeshing
procedure to accommodate crack propagation. Various local arc-length methods are employed to solve the material-
nonlinear system equations characterised by strong snap-back. Three concrete beams, including a single-notched
three-point bending beam (mode-I fracture), a single-notched four-point shear beam (mixed-mode fracture) and a
double-notched four-point shear beam (mixed-mode fracture), are modelled. Comparisons of the numerical results with
experimental data show that this model is capable of fully automatically modelling concrete tensile fracture process with
accurate pre/post-peak load—displacement responses and crack trajectories. Its mesh-objective nature, together with the
high efficiency of the energy crack propagation criterion, makes using coarse meshes to obtain reasonably accurate
simulations possible. The local arc-length numerical algorithms are found to be capable of tracking complex equili-
brium paths including strong snap-back with high robustness, generality and efficiency.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Developing finite element models (FEM) to simulate tensile fracture behaviour of concrete beams has
been extensively carried out in the last two decades. Two types of crack models, i.e., the smeared crack
model and discrete crack model, are most frequently used to represent cracking. The smeared crack model
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assumes that an infinite number of parallel cracks of infinitely small opening are distributed over the finite
element based on a fixed finite element mesh. The crack propagation is simulated by reducing the material
stiffness and strength. The constitutive laws are defined by nonlinear stress—strain relations with strain
softening. The discrete crack model is based on displacement discontinuity, which is usually represented by
nonlinear interface elements. The constitutive behaviour of such elements is represented by softening
traction-crack relative displacement relations, as assumed by the cohesive crack model (CCM), or fictitious
crack model termed by Hillerborg et al. (1976). The smeared crack model has been much more popular
than the discrete crack model because of its computational convenience (e.g., De Borst, 1986, 1987; Rots
and De Borst, 1987; Bazant and Lin, 1988; Rots, 1988, 1991; Yamaguchi and Chen, 1990; Malvar, 1993;
Bolander and Hikosaka, 1992; Duan, 1994; Foster et al., 1996; Abdollahi, 1996a,b; Ali, 1996; May and
Duan, 1997; Ozbolt and Reinhardt, 2002). The latter has been less investigated (e.g., Ingraffea and Gerstle,
1984; Carpinteri, 1989; Bocca et al., 1990, 1991; Rots, 1991; Gerstle and Xie, 1992; Xie, 1995; Xie and
Gerstle, 1995; Cendon et al., 2000; Galvez et al., 2002; Yang and Proverbs, 2004), mainly because of various
numerical complexities compounded by the constant change of finite element meshes caused by node
separation to accommodate crack propagation. Besides a proper constitutive model for concrete tensile
softening behaviour, a successful FEM based on discrete crack model must have additional four key
features: a proper crack propagation criterion, an efficient remeshing procedure, an accurate mesh-mapping
technique to transfer structural responses of an old FE mesh to a new one, and a robust and efficient
numerical solution technique to solve nonlinear equation systems characterised with snap-through or snap-
back. It is worth noting that besides the traditional smeared crack models and discrete crack models,
another attractive type of models recently developed based on embedded displacement discontinuity (Moes
et al., 1999; Wells and Sluys, 2000; Alfaiate et al., 2002; Moes and Belytschko, 2002), do not need reme-
shing.

A proper crack propagation criterion is needed to determine when and in which direction a crack will
propagate. The crack is usually assumed to propagate at the direction of the maximum principal stress of
the crack-tip node, which is a basic assumption of the original CCM. This direction criterion has been most
used. The CCM also assumes that the crack propagates when the maximum principal stress of the crack-tip
node reaches concrete tensile strength. This stress-based assumption has been used by most existing studies
(e.g., Carpinteri, 1989; Bocca et al., 1990, 1991). Cendon and his co-workers used a maximum tangential
stress criterion (Cendon et al., 2000; Galvez et al., 2002). However, nodal stresses are either interpolated
from those of integration points in isoparametric finite elements, or are constants when constant strain
elements are used. In both cases, very fine crack-tip meshes are necessary to predict accurate stresses. In
order to reduce the required mesh density near the crack tip so as to simplify the remeshing procedure, Xie
(1995) developed an energy-based cohesive crack propagation criterion. Because of the fast convergence
rate of energy entities in FE analysis, crack propagation can be modelled more accurately even using coarse
meshes (Xie, 1995; Xie and Gerstle, 1995).

An efficient remeshing procedure is paramount in discrete crack modelling to accommodate crack
propagation. The procedures currently available can generally be classified into two categories. One may be
termed “‘remove-rebuild” algorithm. In this algorithm, a new crack-tip node is determined by extending a
specified crack growth increment in the calculated propagation direction. The original mesh within a certain
range around the new crack-tip node is then completely removed. A complex procedure is followed to form
the new crack and regenerate the mesh within this range where a regular rosette is added. This regenerating
procedure may be too complicated to be applied to composite structures such as reinforced concrete beams
with dissimilar material interfaces. Representatives of such algorithm are the ones developed by
Wawrzynek and Ingraffea (1989) and Bocca et al. (1990, 1991). The other type of algorithms may be termed
“insert-separate” algorithms such as one developed by Xie in his program AUTOFRAP (Xie, 1995; Xie
and Gerstle, 1995). In this procedure, a new edge from the old crack-tip node is first inserted into the local
mesh in the propagation direction. The intersection point of this edge with the original mesh is the new
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crack-tip node. The new crack is then formed by separating those nodes along the line through the new and
old crack-tip nodes. A rosette can be finally added to refine the tip-node mesh. Because this procedure
neither completely removes nor rebuilds the new crack-tip mesh as the “remove-rebuild” procedure does,
fewer elements are affected and the procedure is much simpler. After remeshing, the structural state vari-
ables from the old mesh need to be transferred/mapped as accurately as possible to the new mesh as their
initial values to be used in next loading step so as to ensure numerical convergence. The most widely used
mapping methods are inverse isoparametric mapping (e.g., James, 1998) and direct interpolation (e.g.,
Harbaken and Cescotto, 1990).

A variety of numerical procedures have been used to solve nonlinear equation systems associated with
material softening, such as Newton iteration and its extensions (e.g., Abdollahi, 1996a,b), dynamic re-
laxation (Xie, 1995; Xie and Gerstle, 1995), and various arc-length controlled procedures (e.g., De Borst,
1986; Crisfield, 1986; Rots and De Borst, 1987; Crisfield and Wills, 1988; Rots, 1991; May and Duan, 1997,
Hellweg and Crisfield, 1998; Alfano and Crisfield, 2001; Crisfield et al., 1997). These solutions, however,
have not necessarily led to ideal predictions. Various problems have been reported when the post-peak part
of the load-displacement relation is desired, especially when sharp snap-back phenomenon happens in
mixed-mode fracture modelling. The Newton iteration methods with load control fail to converge once the
limiting point is reached and the post-peak responses cannot be predicted. Displacement controlled Newton
methods can tackle structural problems exhibiting snap-through but fail to model snap-back behaviour.
The dynamic relaxation method used in a few analyses (Xie, 1995; Xie and Gerstle, 1995) has been criticized
for its slow convergence rate and numerical instability due to uncertainties in selecting various pseudo-
parameters (e.g., Underwood, 1983). The arc-length method, initially proposed by Riks (1979) and sub-
sequently adapted by Crisfield (1981) and others, succeeded for the first time in tracing the limiting point
and post-peak responses by constraining the iterative path along a normal plane or a cylindrical/sphere
controlled by a prescribed arc-length. This method has been widely used. However, it has been often re-
ported that these traditional normal-plane and cylindrical/spherical arc-length methods may still fail to
converge at or near the limiting points when they are applied to problems involving softening materials
(Crisfield, 1986; De Borst, 1986, 1987; Rots and De Borst, 1987; Crisfield and Wills, 1988; Duan, 1994;
Crisfield et al., 1997; May and Duan, 1997; Hellweg and Crisfield, 1998; Alfano and Crisfield, 2001). Even
the combination of line searches and acceleration techniques (e.g., quasi-Newton) with arc-length method
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Fig. 1. Key steps of discrete crack FEM.
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only achieved limited improvements (May and Duan, 1997). De Borst (1987) and Rots and De Borst (1989)
pointed out that this inability should be attributed to the global constrain equations including all the de-
grees of freedom, which was contradictory to the fact that the failure zone or fracture process zone in
concrete beams is highly localised. They thus used only the crack sliding displacement (CSD) and the crack
opening displacement (COD) in the constraint equations, respectively. Duan (1994) further devised a new
local arc-length procedure to tackle this problem. By automatically distinguishing the strain-localized
zones, the selection of relative displacements becomes problem-independent. They reported close agree-
ments with the experimental data based on the local constraint methods using the smeared crack model.

However, very few studies using arc-length methods in the context of discrete crack modelling have been
reported. In addition, almost all such studies used pre-defined interface elements. For example, Rots (1991)
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used pre-defined interface elements with the COD controlled arc-length method. Alfaiate et al. (1997)
developed a “non-prescribed’” crack propagation model that limited the cracks along the edges of the finite
elements without changing the original FE meshes. This model thus approximates a smooth crack tra-
jectory with a zigzagged one. Recent studies reported by Cendon and his co-workers (Cendon et al., 2000;
Galvez et al., 2002) used a two-stage approach: predicting crack paths using linear elastic fracture me-
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Fig. 5. “Insert-separation” remeshing procedure (after Xie, 1995). (a) Possible crack propagation cases and (b) dealing with Case 2 by
dragging a node.
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Fig. 6. Three-point bending beam for Mode-I crack propagation (unit: mm).
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chanics (LEFM) and incorporating CCM into the crack paths by nonlinear springs. The conclusions drawn
from a recent comparative study carried out by the authors (Yang and Proverbs, 2004) was also based on
pre-defined crack paths although some initial automatic modelling of crack propagation was carried out on
a single-edge notched shear beam. More investigation of the application of arc-length methods to fully
automatic discrete crack modelling of fracture process in concrete structures is still desired.

This paper presents a fully automatic discrete crack propagation model for fracture analysis of concrete
structures. It uses the remeshing procedure and the energy-based crack propagation criterion proposed by
Xie (1995) and Xie and Gerstle (1995). An in-house program, incorporating a modified version of Xie’s
AUTOFRAP and implementing various numerical techniques, was developed and used in this study. The
following first describes the key aspects of the model. Four concrete beams, including a single-edge notched
three-point bending beam (mode-I fracture), a single-edge notched four-point shear beam (mixed-mode
fracture) and a double-edge notched four-point shear beam (mixed-mode fracture), are then modelled.
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Fig. 7. Four-point single edge-notched shear beam for mixed-mode crack propagation (unit: mm).

!
r =0

i
E=27GPa v =0.1
G;=100N/m S
Thickness=0.1m 5
Plane stress
B
| 400 4&» 400

lﬂ - VI

Fig. 8. Four-point DENS for mixed-mode crack propagation with two cracks (unit: mm).

Table 1

Parameters of bilinear COD-traction curves of three example beams
Beam G; (N/m) gy (MPa) wy (mm) a1 (MPa) w; (mm) w,. (mm) ko (MPa)
SENB 137.0 3.33 0.00001 1.11 0.0329 0.148 33,000
SENS 150.0 4.0 0.00001 1.33 0.03 0.135 40,000

DENS 100.0 2.0 0.00001 0.67 0.04 0.18 20,000
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Various local arc-length strategies are examined and their computational efficiency and effectiveness are
discussed as well as the robustness and mesh objectivity of the model.

2. Discrete crack finite element model

A thorough description of this model and its computer implementation (Yang, 2002) are beyond the
scope of this paper. Fig. 1 illustrates its key steps. The critical physical and numerical aspects of the model
are briefly presented as follows.

(a)

(b)

(©
Fig. 9. Initial finite element meshes for SENB beam: (a) Ly.x > 25 mm, (b) Ly, = 25 mm and (¢) Ly, = 10 mm.

()

(b)
Fig. 10. Initial finite element meshes for SENS beam: (a) Lyax > 20 mm and (b) Ly, = 20 mm.
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(a)

(b)

Fig. 11. Initial finite element meshes for DENS beam: (a) Ly, > 22 mm and (b) Ly,x = 22 mm.

(a)

(d)

Fig. 12. Cracking process of the SENB beam using L, = 25 mm (a) F = 0.6 KN, (b) F = 0.8 KN (peak load), (c) F = 0.464 KN and
(d) F = 0.30 KN (on collapse): 390 nodes and 9 interface elements.
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2.1. Cohesive crack model and unloading paths

CCM can accurately model the energy dissipation process in quasi-brittle materials such as concrete. It
assumes that a fictitious crack or a fracture process zone (FPZ) exists ahead of a real crack tip. The FPZ has
the capability of transferring stresses through mechanisms such as aggregate interlock and material
bonding until the COD reaches a critical value. The CCM has become the basis of nonlinear discrete crack
modelling and has been incorporated into some finite element codes in the form of two-dimensional four-
node, six-node and three-dimensional eight-node interface elements to model mode-I and mixed-mode
crack propagation (e.g., Ingraffea and Gerstle, 1984; Gerstle and Xie, 1992; Xie, 1995; Xie and Gerstle,
1995). The four-node interface elements developed by Gerstle and Xie (1992) are used to represent the
cohesive cracks in this study. Fig. 2 schematically shows the FPZ in concrete structures and two interface
elements used to model the FPZ.

The Petersson’s bi-linear curve (Petersson, 1981) is used here to model the softening behaviour of the
cohesive interface elements. Fig. 3 shows the bi-linear COD-traction curve with unloading path indicated.
The initial stiffness should be high enough to represent the uncracked material prior to the concrete tensile
strength as long as numerical ill-conditioning does not occur. Most existing research used an irreversible
unloading path or an elastic damage model (Path 1 in Fig. 3). It assumes that after reaching a value w*, for
decreasing value of w an elastic unloading occurs with a reduced stiffness which represents the secant from
the current point to the origin (A — C) (Rots and De Borst, 1987; Rots, 1988; Rots, 1991; Ali, 1997,
Alfaiate et al., 1997; Alfano and Crisfield, 2001). Hellweg and Crisfield (1998) distinguished another un-
loading mechanism, i.e., reversible unloading, which assumes a completely reversible COD-traction con-
stitutive law (Path 2 in Fig. 3) (A — B — C). Physically, the irreversible unloading represents cracking more
realistically than the reversible unloading because when a crack is closing, it cannot transfer higher stresses
because the stress-transferring mechanisms such as aggregate interlock and material bonding have been

(a)

(b)

Fig. 13. Deformed configurations of the SENB beam on collapse. (a) Lyax > 25 mm (F = 0.53 KN, 242 nodes and 5 interface elements)
and (b) L. = 10 mm (F = 0.167 KN, 513 nodes and 16 interface elements).
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(d)

Fig. 14. Cracking process of the SENS beam using L,,x = 20 mm. (a) F = 140 KN (peak load), (b) F = 120 KN, (c) F = 60 KN and
(d) F =20 KN (on collapse): 519 nodes and 25 interface elements.
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damaged. However, the authors’ previous study (Yang and Proverbs, 2004) showed that the unloading
paths played an important role in numerical strategies in modelling a mixed-mode concrete beam. In view
of this both unloading paths will be investigated in this research.

2.2. Energy-based crack propagation criterion

Based on the principle of energy conservation, Xie (1995) derived the following energy-based cohesive
crack propagation criterion
of
G-—u'—=0 1
v (1)
where u is the displacement vector, f is the cohesive forces and A is the crack surface area. G is the total
strain energy release rate (SERR) calculated by
1 ;0K + OP
G——Eu &“‘i‘u a (2)
where K is the total stiffness matrix of the elastic bulk and P the total equivalent nodal force due to external
tractions and body forces. In planar mixed-mode fracture problems, the displacement field and SERR can
be decomposed to Mode-1 and Mode-II components as

u=uj + Uy (3)

G =G+ Gy (4)

Fig. 4 presents a simple method for conducting a virtual crack extension (VCE) as proposed by Xie
(1995) to compute SERR, in which only the crack-tip elements contribute to the energy release rates. By
using a finite difference approximation from Eq. (2), the Mode-I and Mode-II SERRs in Eq. (4) may be
expressed as

1 Nee g o 1 Neef . .
Gi =57 Zuli AKSuj; + 5 Zuy AP* (5a)
i= J=
1 Nee . . 1 Neer T .
G = — 537 D U AKuj, + v > AP (5b)
i=1 Jj=1

Fig. 15. Deformed configurations of the SENS beam using L,,,x > 20 mm on collapse: F = 23 KN, 283 nodes and 11 interface ele-
ments.
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(a)

| ?‘

(d)

Fig. 16. Cracking process of the DENS beam using L,,x =22 mm (a) F =42 KN (peak load), (b) F =36 KN, (¢c) F =27 KN,
(d) F =23 KN: 388 nodes and 24 interface elements.

Fig. 17. Deformed configuration of the DENS beam using Ly.x > 22 mm: F = 20 KN, 241 nodes, 14 interface elements.

in which N, and Ny are the total number of elements and the number of elements with applied force
around the crack tip respectively; uf; and uf}, are the Mode-I and Mode-II displacement vectors of the ith
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crack-tip element respectively; AK? is the change of ith crack-tip element stiffness matrix due to VCE; ApS is
the change of the nodal force vector of the jth crack-tip element due to VCE; and A4 is the increase of crack
surface area after a VCE Aa and A4 = tAa for a 2D structure with a thickness ¢.

Interested readers are referred to Yang et al. (2001) for detailed discussion of calculating SERR. The
second term of Eq. (1) can be explicitly derived using the four-node interface elements (Xie, 1995). The
crack is assumed to propagate in the direction of the maximum principal stress of the crack-tip node.

2.3. Remeshing procedure

When a crack is judged to propagate, a remeshing procedure is carried out to accommodate its propa-
gation. The basic steps of Xie’s remeshing procedure (Xie, 1995) are outlined as follows.
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Fig. 18. Load-deflection curves of beam SENB predicted using mesh Fig. 9a and Ny = 20. (a) TAN-based algorithms and (b) SEC-
based algorithms.
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e declete the existing rosette around the old crack-tip node;

e locate the next tip according to calculated crack propagation direction. Two cases are identifiable (Fig.
5):

Case 1: the next crack tip is an existing node connected to the old crack tip;
Case 2: the next crack tip is on the edge of a crack-tip element;

o for Case 1, the edge connecting the new crack-tip node and the old one is split up. For Case 2, the node
closest to the new crack-tip position is dragged to the new crack-tip place and is treated as the new crack-
tip node. In this way Case 2 becomes Case 1 (Fig. 5);
refine the new crack-tip mesh according to a specified maximum crack propagation length;
triangularize all elements around the new crack tip; and

e add a rosette around new crack tip.

For each crack during this procedure, the old three-node crack-tip interface element is altered to a four-
node interface element. One three-node tip interface element and one four-node one are created.

2.4. Mesh mapping

The model adopts a direct mapping method proposed by Harbaken and Cescotto (1990). It evaluates the
nodal values in the new mesh by directly interpolating those from the old mesh. The following equation is
used to map a variable Z, which can be stress, displacement and other state variables at point j

N  Z Cz,
(k)%
Z; = -

= ©)
(ZVd)+s

where N is the number of points for interpolation in the old mesh, Z; is the value of Z at the point &, Z, is the
value of Z at the nearest point p to point j, and Ry, is the distance between points k& and j. The technique
requires the user to specify N points for interpolation, the maximum distance Ry.x, the minimum distance
Ruin and the coefficient C. Those points outside the radius R, are not considered. If there is a point k very

Table 2
Total number of increments and total iterations for SENB beam
Algorithm Ny =20 Ny =30
Total number of Total number of Total number of Total number of
increments iterations increments iterations
SEC-REV-V1 37 814 24 769
SEC-REV-V2 33 668 22 664
SEC-REV-V3 48 1172 25 991
SEC-IRE-V1 37 814 24 769
SEC-IRE-V2 34 681 22 666
SEC-IRE-V3 48 1172 25 991
TAN-REV-V1 15 794 15 597
TAN-REV-V2 17 445 15 610
TAN-REV-V3 16 751 10 1200
TAN-IRE-V1 15 795 13 592 (failed)
TAN-IRE-V2 19 421 15 618

TAN-IRE-V3 14 746 8 580 (failed)
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close to j so that their distance is smaller than R, Z; is assigned to the value of Z;. The main advantages of
this method are the simplicity and flexibility in choosing C, Ry.x and Ry,,. Their optimum values to achieve
best mapping results are mesh and problem dependent. This study uses a set of empirical values as follows:
C =0.8, Rpin = 0.1, and R, = 3L, where L. is the length of the longest edge of the element in the old
mesh in which the mapped point is located.

2.5. Local arc-length method

The comparative study carried out by the authors (Yang and Proverbs, 2004) has shown that the local
arc-length algorithms are much more superior than the global ones in terms of numerical robustness and
efficiency. The term “global” used herein means that the arc-length constraint equations include all the
degrees of freedom whereas only selected degrees of freedom of dominant nodes are included in a “local”
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Fig. 19. Iterative characteristics of TAN/SEC-based algorithms for the SENB beam. (a) TAN-based algorithms and (b) SEC-based
algorithms.
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arc-length method. The Duan’s local updated normal plane constraint equation (Duan, 1994; May and
Duan, 1997) is used in this study. The local arc-length formulations in one loading increment can be written

as

> V(') V(A =P, (k=2,3,4,..) (7a)
&' = ! (7b)
Vo V(s - V(su)

2. V(su') - (V(Au") + V(u’))
2. V(duT) - V(u) ’

Sk =82 —

(k=2,3,4,..)) (7c)
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Fig. 20. Load-CMSD curves of beam SENS: (a) TAN-based algorithms and (b) SEC-based algorithms.
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where [ is the specified arc-length, u is the displacement vector and / is the loading factor. The symbols A
and d represent incremental and iterative change respectively. k is the iterative number. du and du* are
iterative displacement vectors (Crisfield, 1997). Eq. (7a) defines the constraint equations; Eq. (7b) deter-
mines the loading factor at the beginning of a loading increment 31'; and the iterative loading factors are
calculated by Eq. (7c).

The summation in Eq. (7) is calculated in an element-by-element way. Only the elements contributing to
structural nonlinearity are included in the constraints. In the smeared crack models, they are finite elements
in the damage and failure zones. In CCM based discrete crack models, they are nonlinear interface ele-
ments. The symbol V denotes the relative displacement vector (RDV) of dominant elements,

V@) =la—a, a—a as—a; - ay—a, 1] (8)

where vector a is any displacement vector in Eq. (7).

For discrete crack modelling in which the nonlinear interface elements are the dominant elements, an-
other formulation of RDV may include only two CODs and two CSDs of the two pairs of nodes of all four-
node interface elements (Fig. 2), i.e.,

V(a)=[aa—as as—as a1 —a; 613—615]T 9)
Simpler forms may include only COD or CSD at the crack mouth such as

V(a) = [as — as]" (10a)

V(a) = |a; —ai]" (10b)

This set of formulations (Egs. (7-10)) have three advantages (Duan, 1994; May and Duan, 1997): (i) Eq.
(7a) limits the iteration trajectory on a spherical surface, which always has an intersection with the equi-
librium path; (ii) it does not need to choose a proper root as spherical/cylindrical constraints do since there
is only one root of loading factor; and (iii) the sign of the loading factor will be changed automatically if
necessary within the iterations if a total secant stiffness is used; (iv) this local algorithm using RDV
guarantees a rapid and stable convergence because it is able to catch the structural nonlinearity and remove
the adverse effects of the rigid body movement on the accurate representation of nonlinearity. These ad-
vantages have also been demonstrated in (Yang, 2002; Yang and Proverbs, 2004).
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0 0.05 0.1 0.15 0.2 0.25

Deflection at loading point (mm)

Fig. 21. Load-deflection curves of beam SENS: strong snap-back.
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The authors’ study has also shown (Yang and Proverbs, 2004) that this constraint method does not
inherently defy using the tangential stiffness. When the tangential stiffness is used, Eq. (7b) should be
modified as follows

I
V2. V(o) - V(su)

where |K!| is the determinant of the tangential stiffness matrix K! calculated at the first iteration of a
loading increment.

At the beginning of each loading step, the arc-length / (Eq. (7)) must be determined to ensure the
efficiency of the algorithms. Bellini and Chulya (1987) found that the definition of / had a direct effect on
the performance of cylindrical/spherical arc-length algorithms applied to geometrically nonlinear problems.
The arc-length of the ith loading increment /; is often predicted by (Crisfield, 1997)

4" = sign(|K!|)

(11)
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Fig. 22. Load F-deflection curves of the beam DENS predicted using mesh Fig. 11a and Eq. (14): strong snap-back. (a) Overall and
(b) around peak load.
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Nd m
L= (24, i=234,. . 12
<M1> o i (12)

where N;_; and /;_; are the iteration number and arc-length used by the (i — 1)th loading step respectively.
Ny is a desired optimum iteration number which is problem-dependent. The coefficient m ranges from 0.25
to 0.5 (Bellini and Chulya, 1987). Eq. (12) tends to shorten / to keep the iteration number down when it
exceeds Ny.

The arc-length in the first loading increment /; can be determined from Eq. (7b) by specifying an initial
loading factor based on a proper reference loading condition, e.g., ' = 0.1. Special considerations are
needed for the second loading increment when Eq. (12) is used in some cases. For example, in the three
numerical example beams modelled in this study (ref. Sections 3 and 4), there are no initial cracks and thus
no interface elements in the first loading increment. Interface elements are added in the second increment.
This means all the nodal displacements are used in Eq. (7b) (i.e., global arc-length method), which results in
a relatively large /,. If a comparable /, calculated from Eq. (12) is used in Eq. (7b), 3)' for the second
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Z’i vy
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Deflection at load F (mm)

Fig. 23. Load F-deflection curves of the beam DENS predicted using mesh Fig. 11a and Eq. (14): compared with experimental data.
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Fig. 24. Load-deflection curves of the beam SENB using different finite element meshes.
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loading increment will be very large because only RDVs of the added interface elements are used in Eq.
(7b). Too many iterations or even divergence may be caused by the large 31'. In order to avoid this, Eq. (12)
is modified as
84 = Jini i=1,...,j
I = (ijl) Ly i=j+1,...
where j is the loading increment in which the interface elements are first added and /;,; is an initial loading
factor for the first j increments. The following default values are used: Ny = 20, m = 0.5 and 4;,; = 0.1.

(13)

2.6. Iterative numerical algorithms and convergence criterion

The modified Newton—-Raphson iterative procedure is used for all the analyses, i.e., the global stiffness
matrix is formed at the first iteration of every loading increment and remains unchanged during iterations
afterwards.
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Fig. 25. Load-CMSD curves of the beam SENS using different finite element meshes.
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Fig. 26. Load-deflection curves of the beam DENS using different finite element meshes.
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The convergence criterion based on the out-of-balance force factor is used for all the analyses, i.e.,

[[r(w)]
JolI€]|

<p (14)

where r is the out-of balance force vector, f¢ is the reference loading vector, f8 is the tolerance, Z, is the
converged total loading factor of the last loading increment and the norms are Euclidean. A tolerance of
0.001 is used in all the analyses.

The analysis is terminated when any of the following cases is encountered: (i) a crack extends to the finite
element boundary; (ii) the iteration number exceeds the specified maximum allowed iteration number (1000
in this study); and (iii) the calculated post-peak load is smaller than a specified one.

3. Numerical examples

Three plain concrete beams with experimental data available are modelled as numerical examples in this
study.

3.1. Test setups and material properties

The first example is a single-edge notched beam subjected to three-point bending (SENB). It was tested
by Petersson (1981) and modelled by Saleh and Aliabadi (1995) using boundary element method (BEM)
and by Xie (1995) using FEM. The geometry, boundary conditions and material properties of the beam are
shown in Fig. 6. This is a mode-I crack propagation problem.

The second example is the four-point single-edge notched shear beam (SENS) first tested and analysed
by Arrea and Ingraffea (1982). This shear beam has since become a benchmark for the purpose of mixed-
mode crack propagation analysis using both FEM (Rots and De Borst, 1987; Xie, 1995; Xie and Gerstle,
1995; Cendon et al., 2000; Yang and Proverbs, 2004) and BEM (Saleh and Aliabadi, 1995). The geometry,
boundary conditions and material properties of this beam are shown in Fig. 7.

The third example is the four-point double-edge notched shear beam (DENS) tested and modelled by
Bocca et al. (1990, 1991). Two cracks form during the loading process. This may well demonstrate the
model’s potential to model complex multi-crack propagation. The geometry, boundary conditions and
material properties of this beam are shown in Fig. 8.

The shear fracture resistance for the two mixed-mode beams SENS and DENS is simply neglected in this
study. This negligence is based on three reasons. Firstly, it has been demonstrated that inclusion of shear
traction-CSD curve could only lead to insignificant improvements (e.g., Ali, 1996). Secondly, for these two
particular beams, the shear effect is only significant in the initial stage after which mode-I fracture is
dominant according to Bocca et al. (1990, 1991). Thirdly, there is a lack of experimental data about the
shear traction-CSD curve.

The parameters of the COD-normal traction curves represented by Petersson’s bilinear model (Fig. 3) for
the three beams are listed in Table 1.

3.2. Finite element modelling

The local arc-length constraint (Eq. (7)) discussed in Section 2.5 can be combined with the other nu-
merical aspects to form various algorithms, which have varying overall numerical effectiveness and effi-
ciency. Among the other factors, the iterative stiffness matrix, the unloading paths (Fig. 3), and the RDVs
(Egs. (8-10)) are the major concerns of this work. For the convenience of discussion thereafter, a numerical
algorithm is defined by combining one of the three RDVs, with either the tangent or secant iterative stiffness
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matrix, and either the irreversible or reversible unloading path. The following notions are used: TAN for
tangential stiffness and SEC for secant stiffness, REV for reversible and IRE for irreversible unloading path,
and V1, V2 and V3 for RDVs in Egs. (8) and (9), and (10) respectively. In this way 12 algorithms are
defined. For example, Algorithm TAN-IRE-V1 stands for the local arc-length constraint using RDV of Eq.
(8) with the tangential iterative stiffness and irreversible unloading path. The computational effectiveness
and efficiency will be examined and compared to each other in the following analysis.

The cracking process of the model is controlled by a maximum crack propagation incremental length
Lyax which is the maximum allowable crack extension in one loading increment. This requirement is au-
tomatically fulfilled by refining crack-tip meshes in the remeshing procedure (Section 2.3). If L, is
specified with a value greater than the greatest initial size of the finite elements around the potential crack
path, or with a value greater than the maximum initial size of all the finite elements, no mesh refining
operation will occur and the number of loading increments will be closer to the element number in the
cracking direction. Otherwise, the crack-tip elements and its surrounding elements will be refined during
remeshing to ensure all the actual crack propagation lengths less than L,,. More loading steps are
therefore modelled, leading to more realistic crack trajectories and smoother load—displacement curves. In
this way, only one reasonably fine initial FE mesh is sufficient to achieve required cracking steps determined
by Lmax~

Figs. 9-11 show some initial FE meshes modelled for the three example beams with varying crack
propagation control lengths Ly.x. The elastic bulk of concrete is modelled with four-node isoparametric and
three-node constant strain elements and cracks are modelled with four-node nonlinear interface elements.
The finite element meshes with different mesh density for the same beam will be used for mesh objectivity
investigation. A plane stress condition is assumed for all three beams.

4. Results and discussion
4.1. Cracking process and crack trajectory

Figs. 12-17 illustrate some typical successful cracking processes of the three beams, which are fully
automatically modelled by the presented discrete crack model. The predicted cracking processes and crack
trajectories are in good agreement with the experimental observations. One can see that during the simu-
lation, the finite element meshes are gradually refined around the cracks as they propagate if a smaller Ly«
is specified. All the displaced configurations use a scale factor of 500.

4.2. Effectiveness and efficiency of the algorithms

All the 12 algorithms are used for the three beams using the initial FE meshes shown in Figs. 9-11.

Fig. 18 shows the predicted load—deflection curves for the beam SENB using the mesh in Fig. 9a and
N4 = 20. All the 12 algorithms predict the pre/post-peak responses very accurately and effectively up to
failure with a load about 0.55 KN.

Table 2 lists the number of loading increments (NOINC) and number of total iterations (NOITE) with
two desired iteration number Ny = 20 and 30. The following conclusions can be drawn from Table 2: (i) the
unloading path has little effect on the effectiveness and efficiency of the algorithms for this beam. This may
be due to the monotonic increasing of incremental COD although unloading does happen in some itera-
tions; (i1) the TAN-based algorithms lead to about 35% save of NOITE over the SEC-based ones for RDV2
and RDV3 for Ny = 20. The save of NOINC for all three RDVs is more than 100%. This is because the
SEC-based algorithms have lower convergence rate and in each loading increment, have averagely more
iterations which lead to shorter arc-length / (Eq. (12)) thus more loading increments. The iterative char-
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acteristics of TAN/SEC-based algorithms can be clearly observed in Fig. 19. This computational superi-
ority of TAN-based algorithms over the SEC-based ones has also been demonstrated by using pre-defined
interface elements (Yang, 2002; Yang and Proverbs, 2004); (iii) a greater Ny = 30 reduces the NOINCs of
SEC-based algorithms by about 1/3, but NOITEs remain almost unchanged. Using a higher Ny = 30 does
not make much difference to NOINCs of TAN-based algorithms. It increases NOITEs of TAN-REV-V2,
TAN-REV-V3 and TAN-IRE-V2 by 25-35%, and even causes numerical failure to TAN-IRE-V1 and
TAN-IRE-V2. Closer examinations showed that the calculation stops from proceeding with the iteration
running between two fixed points on an unloading path, which is demonstrated by a constant positive
tangential stiffness. This has also been experienced before (Yang, 2002; Yang and Proverbs, 2004); and (iv)
the algorithms using RDV (V2) in Eq. (9) saves NOITE by 15-45% over the algorithms using V1 and V3.
The reason for this may lie in that Eq. (9) is capable of grasping the nonlinearity more quickly than the
other two by including softening-related COD/CSD of all interface elements, whereas Eq. (8) uses RDVs
without explicit physical meanings and Eq. (10) uses only one COD/CSD at the crack mouth which is
inadequate to fully represent the nonlinearity.

N4 = 20 and 30 have also been used to model the beam SENS using the mesh in Fig. 10a and similar four
conclusions to the above have been drawn. The specification of Ny is thus very important for numerical
efficiency and stability. As cracks propagate, more interface elements are added and thus more RDVs are
included in Eq. (7b). Using a constant Ny therefore tends to shorten arc-length / calculated by Eq. (12) and
lead to smaller incremental loading factors and thus more increments. Based on extensive simulations, an
interface-element-number-dependent Ny is proposed as follows

Ng = Nl + Nao (14a)

int
where N, is the number of interface elements varying with loading increments and Ny is the initial opti-

mum desired iteration number. Nygy = 10 is used in this study. The coefficient # is dependent on N, and
stiffness matrix. For SEC-based algorithms:

n=15 when N, <10 and 5 =12 when Ny > 10 (14b)
For TAN-based algorithms:
n=1.1 when N, <10 and #»=1.0 when Ny > 10 (14c¢)

The higher 5 for SEC-based algorithms is used to compensate its slow convergence. Eq. (14) is used for all
the following simulations and proves very efficient.

Fig. 20 compares the predicted load-crack mouth CMSD curves for the beam SENS with the experi-
mental data. Again excellent agreements can be seen for both TAN-based and SEC-based algorithms. Fig.
21 presents some predicted load—deflection curves showing strong snap-back behaviour, which is very hard
to catch using the other methods.

Numerical difficulties are encountered in modelling the beam DENS with two cracks propagating si-
multaneously. As for the second beam, all three TAN-IRE-based algorithms fail by oscillation on ap-
proaching the peak load. Unexpectedly, the six REV-based algorithms, which work very well for the first
two, also fail just before or after peak load is reached. Only the three SEC-IRE-based algorithms suc-
cessfully trace the full equilibrium paths, one of which is shown in Fig. 22a. The detailed information
around the peak load is illustrated in Fig. 22b. It can be seen that initially the three loading points (F1, F2
and F) deflect with the same values. After the peak load, the deflection at Load F2 shows fierce snap-back
whereas that at Load F1 continues to increase. This process corresponds to the gradual closure of the upper
crack and continuing opening of the lower one (Figs. 16a—d and 17). A real unloading process, at the
loading incremental level, therefore takes place. This contrasts with that, in modelling the beams SENB and
SENS, only numerical unloading occurs at the iterative level. Therefore, it may be concluded that the REV-
based algorithms are unable to model problems with real unloading. This inability may be because they
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assume a unloading path that does not represent the real cracking process. It can also be concluded that if
real unloading happens, only a SEC-IRE-based algorithm can be reliably used. In this case, relatively high
computational cost (although it may still be lower than that from the other methods) should be expected
even using a local arc-length method.

Fig. 23 compares the predicted load—deflection relations with the experimental data and FEM results
from Bocca et al. (1990, 1991). The deflection at the total load F in Fig. 22 and Fig. 23 is calculated from
those at Load F1 and Load F2 assuming that the loading rig using a steel-beam has infinite stiffness. This
assumption may cause the discrepancy between the predictions with the experiment data. The discrepancy
of current predictions with Bocca et al.’s FEM results may be due to different COD-traction curves used by
this study (Petersson’s bilinear curve) and them (single linear curve).

4.3. Mesh objectivity

The predicted load—deflection/CMSD curves for the three beams using different finite element meshes
whose density is controlled by L,,.x are presented in Figs. 24-26. For the beam SENB, the numbers of nodes
and interface elements of three FE meshes on collapse, i.e., Figs. 13a, 12d, and 13b, are 242 and 5, 390 and
9, and 513 and 16, respectively. For the beam SENS, these numbers of two FE meshes on collapse, i.e.,
Figs. 15 and 14d, are 283 and 11, and 519 and 25, respectively. They are 241 and 14 (Fig. 17), and 388 and
24 (Fig. 16), respectively for the beam DENS. The huge differences in degrees of freedom, the mesh density
and steps of crack propagation make little difference to the predictions in terms of both crack trajectories
and load-displacement relations. This well demonstrates the mesh objectivity and robustness of the pro-
posed model and means only a reasonably coarse mesh can lead to accurate simulations. The high
numerical efficiency is thus well preserved. The ability of SEC-IRE-based algorithms to model unloading-
involved problems with crack closure makes the model a feasible numerical tool to be used in modelling
multi-crack propagation under complex loading conditions.

5. Conclusion

This paper has presented a cohesive discrete crack model based FEM for fully automatic simulation of
multi-crack propagation in concrete beams. It combines an energy-based crack propagation criterion, a
simple remeshing procedure, and various local arc-length numerical algorithms to solve material softening-
related nonlinear equation systems. Extensive finite element analyses have been carried out using this model
to simulate crack propagation process in three concrete beams under Mode-I and mixed-mode fracture
conditions. Comparisons of the numerical results with experimental data show that this model is capable
of fully automatically modelling concrete tensile fracture process with accurate pre/post-peak load—
displacement responses as well as accurate crack trajectories.

The various local arc-length algorithms are found to be capable of tracking complex equilibrium paths
characterised with strong snap-backs due to cracking. In general, the tangential stiffness matrix based
algorithms have much higher overall efficiency over the secant stiffness matrix based ones. For problems
without real unloading, both reversible and irreversible unloading paths may lead to same predictions.
When real unloading takes place, only the irreversible path succeeds in representing the real cracking
process. In this case, a secant stiffness matrix must be used to achieve numerical convergence. The RDV,
which includes COD and CSD of all interface elements, is found to have highest computational efficiency.

The proposed model is found to have excellent mesh objectivity. This advantage, together with the high
efficiency of the energy crack propagation criterion, makes using coarse meshes to obtain reasonably ac-
curate simulations possible. The model may therefore be a feasible numerical tool to be used in modelling
multi-crack propagation under complex loading conditions.
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